Introduction to Algorithmic Trading Strategies
Lecture 6

Technical Analysis: Linear Trading Rules

Haksun Li
haksun.li@numericalmethod.com
www.numericalmethod.com
Outline

- Moving average crossover
- The generalized linear trading rule
- P&Ls for different returns generating processes
- Time series modeling
References

Assumptions of Technical Analysis

- History repeats itself.
- Patterns exist.
Does MA Make Money?

- Brock, Lakonishok and LeBaron (1992) find that a subclass of the moving-average rule does produce statistically significant average returns in US equities.
- Levich and Thomas (1993) find that a subclass of the moving-average rule does produce statistically significant average returns in FX.
Moving Average Crossover

- Two moving averages: slow \((n)\) and fast \((m)\).
- Monitor the crossovers.
- \[B_t = \left(\frac{1}{m} \sum_{j=0}^{m-1} P_{t-j} \right) - \left(\frac{1}{n} \sum_{j=0}^{n-1} P_{t-j} \right), \quad n > m \]
- Long when \(B_t \geq 0\).
- Short when \(B_t < 0\).
How to Choose n and m?

- It is an art, not a science (so far).
- They should be related to the length of market cycles.
- Different assets have different m and n.
- Popular choices:
 - (150, 1)
 - (200, 1)
AMA(n, 1)

- $B_t \geq 0$ iff $P_t \geq \left(\frac{1}{n} \sum_{j=0}^{n-1} P_{t-j}\right)$
- $B_t < 0$ iff $P_t < \left(\frac{1}{n} \sum_{j=0}^{n-1} P_{t-j}\right)$
GMA(n, 1)

- $B_t \geq 0$ iff $P_t \geq \left(\prod_{j=0}^{n-1} P_{t-j} \right)^{\frac{1}{n}}$

- $R_t \geq -\sum_{j=1}^{n-2} \frac{n-(j+1)}{n-1} R_{t-j}$ (by taking log)

- $B_t < 0$ iff $P_t < \left(\prod_{j=0}^{n-1} P_{t-j} \right)^{\frac{1}{n}}$

- $R_t < -\sum_{j=1}^{n-2} \frac{n-(j+1)}{n-1} R_{t-j}$ (by taking log)
What is n?

- $n = 2$
- $n = \infty$
Acar Framework

- Acar (1993): to investigate the probability distribution of realized returns from a trading rule, we need
 - the explicit specification of the trading rule
 - the underlying stochastic process for asset returns
 - the particular return concept involved
Empirical Properties of Financial Time Series

- Asymmetry
- Fat tails
Knight-Satchell-Tran Intuition

- Stock returns staying going up (down) depends on
 - the realizations of positive (negative) shocks
 - the persistence of these shocks
- Shocks are modeled by gamma processes.
- Persistence is modeled by a Markov switching process.
Knight-Satchell-Tran Process

\[R_t = \mu_l + Z_t \varepsilon_t - (1 - Z_t) \delta_t \]

- \(\mu_l \): long term mean of returns, e.g., 0
- \(\varepsilon_t, \delta_t \): positive and negative shocks, non-negative, i.i.d

\[f_\varepsilon(x) = \frac{\lambda_1^{\alpha_1}x^{\alpha_1-1}}{\Gamma(\alpha_1)} e^{-\lambda_1 x} \]

\[f_\delta(x) = \frac{\lambda_2^{\alpha_2}x^{\alpha_2-1}}{\Gamma(\alpha_2)} e^{-\lambda_2 x} \]
Knight-Satchell-Tran Z_t
Stationary State

- $\Pi = \frac{1-q}{2-p-q}$
- $R_t = \mu_l + \varepsilon_t \geq \mu_l$, with probability Π
- $R_t = \mu_l - \delta_t < \mu_l$, with probability $1 - \Pi$
GMA(2, 1)

- Assume the long term mean is 0, $\mu_l = 0$.
- $(B_t \geq 0) \equiv (R_t \geq 0) \equiv (Z_t = 1)$
- $(B_t < 0) \equiv (R_t < 0) \equiv (Z_t = 0)$
Naïve MA Trading Rule

- Buy when the asset return in the present period is positive.
- Sell when the asset return in the present period is negative.
Naïve MA Conditions

- The expected value of the positive shocks to asset return \gg the expected value of negative shocks.
- The positive shocks persistency \gg that of negative shocks.
T Period Returns

- $RR_T = \sum_{t=1}^{T} R_t \times I_{\{B_{t-1} \geq 0\}}$

Diagram:

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If $B_T < 0$, sell at this time point.

- Hold until $T$.
```
Holding Time Distribution

- $P(N = T)$
- $= P(B_T < 0, B_{T-1} \geq 0, ..., B_1 \geq 0, B_0 \geq 0)$
- $= P(Z_T = 0, Z_{T-1} = 1, ..., Z_1 = 1, Z_0 = 1)$
- $= P(Z_T = 0, Z_{T-1} = 1, ..., Z_1 = 1|Z_0 = 1)P(Z_0 = 1)$
- $= \begin{cases}
\prod p^{T-1}(1 - p), & T \geq 1 \\
1 - \Pi, & T = 0
\end{cases}$
Conditional Returns Distribution (1)

\[\Phi_{RRT|N=T}(s) = E \left[e^{i \left[\sum_{t=1}^{T} R_t \mathbb{I}_{\{B_{t-1} \geq 0\}} \right] s} \right] | N = T \]

\[= E \left[e^{i \left[\sum_{t=1}^{T} R_t \mathbb{I}_{\{B_{t-1} \geq 0\}} \right] s} \right] | B_T < 0, B_{T-1} \geq 0, \ldots, B_0 \geq 0 \]

\[= E \left[e^{i \left[\sum_{t=1}^{T} R_t \right] s} \right] | Z_T = 0, Z_{T-1} = 1, \ldots, Z_1 = 1 \]

\[= E \left[e^{i [\varepsilon_1 + \cdots + \varepsilon_{T-1} - \delta_T] s} \right] \]

\[= \begin{cases}
\Phi_{\varepsilon}^{T-1}(s) \Phi_{\delta}(-s), & T \geq 1 \\
\Phi_{\delta}(-s), & T = 0
\end{cases} \]
Unconditional Returns Distribution (2)

\[\Phi_{RRT}(s) = \sum_{T=0}^{\infty} \mathbb{E} \left[e^{\left\{ i \left[\sum_{t=1}^{T} R_t \times I_{[B_{t-1} \geq 0]} \right] s \right\}} | N = T \right] P(N = T) \]

\[= \sum_{T=1}^{\infty} \Pi p^{T-1} (1 - p) \Phi_{\varepsilon}^{T-1}(s) \Phi_{\delta}(-s) + (1 - \Pi) \Phi_{\delta}(-s) \]

\[= (1 - \Pi) \Phi_{\delta}(-s) + \Pi (1 - p) \frac{\Phi_{\delta}(-s)}{1 - p \Phi_{\varepsilon}(s)} \]
Long-Only Returns Distribution

\[\Phi_{RR_T}(s|R_0 \geq 0) = \frac{(1-p)\Phi_{\delta}(-s)}{1-p\Phi_{\varepsilon}(s)} \]

Proof: make \(P(Z_0 = 1) = \Pi = 1 \)
I.I.D Returns Distribution

\[\Phi_{RR}(s) = \frac{q\Phi_{\delta}(-s)[1+p-p\Phi_{\varepsilon}(s)]}{1-p\Phi_{\varepsilon}(s)} \]

Proof:

\[p + q = 1 \]

\[\text{make } \Pi = \frac{1-q}{2-p-q} = 1 - q = p \]
Expected Returns

- \[E(RR_T) = -i \Phi'_{RR_T}(0) \]
- \[= \frac{1}{1-p} \{ \Pi p \mu_\varepsilon - (1-p)\mu_\delta \} \]

When is the expected return positive?

- \(\mu_\varepsilon \geq \frac{1-p}{\Pi p} \mu_\delta \), shock impact
- \(\mu_\varepsilon \gg \mu_\delta \), shock impact
- \(\Pi p \geq 1 - p \), if \(\mu_\varepsilon \approx \mu_\delta \), persistence
GMA($\infty, 1$) Rule

- $P_t \geq \left(\prod_{j=0}^{n-1} P_{t-j} \right)^{\frac{1}{n}}$
- $\ln P_t \geq \frac{1}{n} \sum_{j=0}^{n-1} \ln P_{t-j}$
- $\ln P_t \geq \mu_1$
GMA(∞,1) Returns Process

\[\ln P_t = \mu_t + Z_t \varepsilon_t - (1 - Z_t)\delta_t \]
\[R_t = \ln P_t - \ln P_{t-1} \]
\[= Z_t \varepsilon_t - Z_{t-1} \varepsilon_{t-1} - (1 - Z_t)\delta_t + (1 - Z_{t-1})\delta_{t-1} \]
Returns As a MA(1) Process

- $E(R_t) = 0$
- $\text{Var}(R_t) = 2[\Pi(\sigma^2_{\epsilon} + \mu_{\epsilon}^2) + (1 - \Pi)(\sigma^2_{\delta} + \mu_{\delta}^2)]$
- $E(R_{t-i}R_{t-j}) = \begin{cases}
- [\Pi(\sigma^2_{\epsilon} + \mu_{\epsilon}^2) + (1 - \Pi)(\sigma^2_{\delta} + \mu_{\delta}^2)] \\
0
\end{cases}$
GMA(∞, 1) Expected Returns

\[\Phi_{RR_T}(s) = (1 - \Pi)q[\Phi_\delta(s) + \Phi_\delta(-s)] + [1 - p(1 - \Pi)][\Phi_\varepsilon(s) + \Phi_\varepsilon(-s)] \]

\[E(RR_T) = -[1 - p(1 - \Pi)][\mu_\varepsilon + \mu_\delta] \]
MA Using the Whole History

- An investor will always expect to lose money using $\text{GMA}(\infty, 1)$!
- An investor loses the least amount of money when the return process is a random walk.
Optimal MA Parameters

- So, what are the optimal n and m?
Linear Technical Indicators

- As we shall see, a number of linear technical indicators, including the Moving Average Crossover, are really the “same” *generalized* indicator using different parameters.
The Generalized Linear Trading Rule

- A linear predictor of weighted lagged returns
 \[F_t = \delta + \sum_{j=0}^{t} d_j X_{t-j} \]

- The trading rule
 - Long: \(B_t = 1 \), iff, \(F_t > 0 \)
 - Short: \(B_t = -1 \), iff, \(F_t < 0 \)

- (Unrealized) rule returns
 \[R_t = B_{t-1} X_t \]
 - \(R_t = -X_t \) if \(B_{t-1} = -1 \)
 - \(R_t = +X_t \) if \(B_{t-1} = +1 \)
Buy And Hold

\[B_t = 1 \]
Predictor Properties

- Linear
- Autoregressive
- Gaussian, assuming X_t is Gaussian
- If the underlying returns process is linear, F_t yields the best forecasts in the mean squared error sense.
Returns Variance

- \(\text{Var}(R_t) = \mathbb{E}(R_t^2) - (\mathbb{E}(R_t))^2 \)
- \(= \mathbb{E}(B_{t-1}^2 X_t^2) - (\mathbb{E}(R_t))^2 \)
- \(= \mathbb{E}(X_t^2) - (\mathbb{E}(R_t))^2 \)
- \(= \sigma^2 + \mu^2 - (\mathbb{E}(R_t))^2 \)
Maximization Objective

- Variance of returns is inversely proportional to expected returns.
- The more profitable the trading rule is, the less risky this will be if risk is measured by volatility of the portfolio.
- Maximizing returns will also maximize returns per unit of risk.
Expected Returns

- $E(R_t) = E(B_{t-1}X_t)$
- $= E(B_{t-1}(\mu + \sigma N))$
- $= \sigma E(B_{t-1}N) + \mu E(B_{t-1})$
- $E(B_{t-1}) = 1 \times P(F_{t-1} > 0) + -1 \times P(F_{t-1} < 0)$
- $= P(F_{t-1} > 0) - P(F_{t-1} < 0)$
- $= 1 - 2 \times P(F_{t-1} < 0)$
- $= 1 - 2 \times \Phi\left(-\frac{\mu_F}{\sigma_F}\right)$
Truncated Bivariate Moments

- Johnston and Kotz, 1972, p.116

\[E(B_{t-1}N) = \int \int_{F_t>0} N - \int \int_{F_t<0} N \]

\[= \sqrt{\frac{2}{\pi}} \rho e^{-\frac{\mu_F^2}{2\sigma_F^2}} \]

- Correlation:
 \[\rho = \text{Corr}(X_t, F_{t-1}) \]
Expected Returns As a Weighted Sum

\[E(R_t) = \sigma E(B_{t-1} N) + \mu E(B_{t-1}) \]
\[= \sigma \sqrt{\frac{2}{\pi}} \rho e^{-\frac{\mu_F^2}{2\sigma_F^2}} + \mu \left(1 - 2 \times \Phi \left(-\frac{\mu_F}{\sigma_F}\right)\right) \]

- a term for volatility
- a term for drift
Praetz model, 1976

- Returns as a random walk with drift.
- $E(R_t) = \mu(1 - 2f)$, f the frequency of short positions
- $\text{Var}(R_t) = \sigma^2$
Comparison with Praetz model

- Random walk implies $\rho = \text{Corr}(X_t, F_{t-1}) = 0$.
- $E(R_t) = \mu \left(1 - 2 \times \Phi\left(-\frac{\mu_F}{\sigma_F}\right)\right)$
- $\text{Var}(R_t) = \sigma^2 + \mu^2 - \left\{\mu \left(1 - 2 \times \Phi\left(-\frac{\mu_F}{\sigma_F}\right)\right)\right\}^2$
- $= \sigma^2 + 4\mu^2 \Phi\left(-\frac{\mu_F}{\sigma_F}\right) \left(1 - \Phi\left(-\frac{\mu_F}{\sigma_F}\right)\right)$
A biased (Gaussian) forecast may be suboptimal.

Assume underlying mean $\mu = 0$.

Assume forecast mean $\mu_F \neq 0$.

$$E(R_t) = \sigma \sqrt{\frac{2}{\pi}} \rho e^{-\frac{\mu_F^2}{2\sigma_F^2}} \leq \sigma \sqrt{\frac{2}{\pi}} \rho$$
Maximizing Returns

- Maximizing the correlation between forecast and one-ahead return.
- First order condition:
 \[
 \frac{\mu_F}{\sigma_F} = \frac{\mu}{\sigma \rho}
 \]
First Order Condition

- Let \(x = \frac{\mu_F}{\sigma_F} \)

- \(\mathbb{E}(R_t) = \sigma \sqrt{\frac{2}{\pi}} \rho e^{-\frac{x^2}{2}} + \mu (1 - 2 \times \Phi(-x)) \)

- \(\frac{d \mathbb{E}(R_t)}{dx} = 0 \)

- \(\sigma \sqrt{\frac{2}{\pi}} \rho (-x) e^{-\frac{x^2}{2}} + \mu \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} = 0 \)

- \(x = \frac{\mu_F}{\sigma_F} = \frac{\mu}{\sigma \rho} \)
Fitting vs. Prediction

- If X_t process is Gaussian, no linear trading rule obtained from a finite history of X_t can generate expected returns over and above F_t.
- Minimizing mean squared error \neq maximizing P&L.
- In general, the relationship between MSE and P&L is highly non-linear (Acar 1993).
Technical Analysis

- Use a finite set of historical prices.
- Aim to maximize profit rather than to minimize mean squared error.
- Claim to be able to capture complex non-linearity.
- Certain rules are ill-defined.
Technical Linear Indicators

- For any technical indicator that generates signals from a finite linear combination of past prices
 - Sell: $B_t = -1 \text{ iff } \sum_{j=0}^{m-1} a_j P_{t-j} < 0$

- There exists an (almost) equivalent AR rule.
 - Sell: $\widehat{B}_t = -1 \text{ iff } \delta + \sum_{j=0}^{m-2} d_j X_{t-j} < 0$
 - $X_t = \ln \frac{P_t}{P_{t-1}}$
 - $\delta = \sum_{j=0}^{m-1} a_j, \ d_j = -\sum_{i=j}^{m-2} a_i$
Conversion Assumption

\[1 - \frac{P_{t-j}}{P_t} \approx \ln \frac{P_t}{P_{t-j}} \]

Monte Carlo simulation:
- 97% accurate
- 3% error.
Example Linear Technical Indicators

- Simple order
- Simple MA
- Weighted MA
- Exponential MA
- Momentum
- Double orders
- Double MA
Returns: Random Walk With Drift

\[X_t = \mu + \varepsilon_t \]
- The bigger the order, the better.
- Momentum > SMAV > WMAV

How to estimate the future drift?
- Crystal ball?
- Delphic oracle?
Results

Yearly Expected Rule Returns
Random Walk with drift

Rule returns %

Yearly Drift %
Results

Yearly Expected Rule Returns
Random Walk with drift of 25%
Returns: AR(1)

- $X_t = \alpha X_{t-1} + \varepsilon_t$
 - Auto-correlation is required to be profitable.
 - The smaller the order, the better. (quicker response)
Results

Yearly Expected Rule Returns
AR(1) alpha=0.1 without drift

Rule returns %

Order Of Rule
ARMA(1, 1)

\[
(X_t - \mu) - p(X_{t-1} - \mu) = \varepsilon_t - q\varepsilon_{t-1}
\]

Prices tend to move in one direction (trend) for a period of time and then change in a random and unpredictable fashion.

- Mean duration of trends:
 \[
 m_d = \frac{1}{(1-p)}
 \]

- Information has impacts on the returns in different days (lags).
 - Returns correlation:
 \[
 \rho_h = Ap^h
 \]
Results

Yearly Expected Rule Returns
Price-trend model without drift

Rule returns %

Order Of Rule

no systematic winner

optimal order
ARIMA(0, d, 0)

- $\nabla^d (X_t - \mu) = e_t$
- Irregular, erratic, aperiodic cycles.
Results

Yearly Expected Rule Returns
Fractional Gaussian $H=0.6$

- Rule returns %

Order of Rule

- WMAV
- SMAV
- Momentum
ARCH(p)

- $X_t = \mu + \left\{ \sqrt{\alpha_0 + \sum_{i=1}^{p} \alpha_i (X_{t-i} - \mu)^2} \right\} \varepsilon_t$
- $X_t - \mu$ are the residuals
- When $\mu = 0$, $E(R_t) = 0$.

residual coefficients as a function of lagged squared residuals
\[X_t = a + b_1 X_{t-1} + b_2 X_{t-2} + \epsilon_t \]

\[\epsilon_t = \sqrt{h_t} z_t \]

\[h_t = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta h_{t-1} \]
Results

- The presence of conditional heteroskedasticity will not drastically affect returns generated by linear rules.
- The presence of conditional heteroskedasticity, if unrelated to serial dependencies, may be neither a source of profits nor losses for linear rules.
Conclusions

- Trend following model requires positive (negative) autocorrelation to be profitable.
 - What do you do when there is zero autocorrelation?
- Trend following models are profitable when there are drifts.
 - How to estimate drifts?
- It seems quicker response rules tend to work better.
- Weights should be given to the more recent data.