Introduction to Algorithmic Trading Strategies
Lecture 1

Overview of Algorithmic Trading

Haksun Li
haksun.li@numericalmethod.com
www.numericalmethod.com
Outline

- Definitions
- IT requirements
- Back testing
- Scientific trading models
Lecturer Profile

- Dr. Haksun Li
- CEO, Numerical Method Inc.
- (Ex-) Adjunct Professors, Advisor with the National University of Singapore, Nanyang Technological University, Fudan University, etc.
- Quantitative Trader/Analyst, BNPP, UBS
- PhD, Computer Sci, University of Michigan Ann Arbor
- M.S., Financial Mathematics, University of Chicago
- B.S., Mathematics, University of Chicago
Numerical Method Incorporated Limited

- A consulting firm in mathematical modeling, esp. quantitative trading or wealth management
- Products:
 - SuanShu
 - AlgoQuant
- Customers:
 - brokerage houses and funds all over the world
 - multinational corporations
 - very high net worth individuals
 - gambling groups
 - academic institutions
Overview

- Quantitative trading is the systematic execution of trading orders decided by quantitative market models.
- It is an arms race to build
 - more reliable and faster execution platforms (computer sciences)
 - more comprehensive and accurate prediction models (mathematics)
Market Making

- Quote to the market.
- Ensure that the portfolios respect certain risk limits, e.g., delta, position.
- Money comes mainly from client flow, e.g., bid-ask spread.
- Risk: market moves against your position holding.
Statistical Arbitrage

- Bet on the market direction, e.g., whether the price will go up or down.
- Look for repeatable patterns.
- Money comes from winning trades.
- Risk: market moves against your position holding (guesses).
Prerequisite

- Build or buy a trading infrastructure.
 - many vendors for Gateways, APIs
 - Reuters Tibco
- Collect data, e.g., timestamps, order book history, numbers, events.
 - Reuters, EBS, TAQ, Option Metrics (implied vol),
- Clean and store the data.
 - flat file, HDF5, Vhayu, KDB, One Tick (from GS)
Trading Infrastructure

- Gateways to the exchanges and ECNs.
 - ION, ECN specific API
 - Aggregated prices

- Communication network for broadcasting and receiving information about, e.g., order book, events and order status.

- API: the interfaces between various components, e.g., strategy and database, strategy and broker, strategy and exchange, etc.
STP Trading Architecture Example

Exchanges/ECNs
- Exchanges, Inter-Bank, OTC, Back-office, e.g., settlements
- CFETS: FX, bonds
- Unified Trade Feed Adapter, CSTP

Other Trading Systems
- Booking System
- Clearance Adapter
- Adapter Protocol
- FIX

Algo Trading System
- Market Data
- RMB Yield Curves
- Trade Data Database
- Risk Management
- Credit Limit

Main Communication Bus

Centralized Database Farm
The Ideal 4-Step Research Process

- **Hypothesis**
 - Start with a market insight

- **Modeling**
 - Translate the insight in English into mathematics in Greek

- **Model validation**
 - Backtesting

- **Analysis**
 - Understand why the model is working or not
The Realistic Research Process

- Clean data
- Align time stamps
- Read Gigabytes of data
 - Reuters’ EURUSD, tick-by-tick, is 1G/day
- Extract relevant information
 - PE, BM
- Handle missing data
- Incorporate events, news and announcements
- Code up the quant. strategy
- Code up the simulation
 - Bid-ask spread
 - Slippage
 - Execution assumptions
- Wait a very long time for the simulation to complete
- Recalibrate parameters and simulate again
- Wait a very long time for the simulation to complete
- Recalibrate parameters and simulate again
- Wait a very long time for the simulation to complete
- Debug
- Debug again
- Debug more
- Debug even more
- Debug patiently
- Debug impatiently
- Debug frustratingly
- Debug furiously
- Give up
- Start to trade
Research Tools – Very Primitive

- Excel
- Matlab/R/other scripting languages...
- MetaTrader/Trade Station
- RTS/other automated trading systems...
Matlab/R

- They are very slow. These scripting languages are interpreted line-by-line. They are not built for parallel computing.
- They do not handle a lot of data well. How do you handle two year worth of EUR/USD tick by tick data in Matlab/R?
- There is no modern software engineering tools built for Matlab/R. How do you know your code is correct?
- The code cannot be debugged easily. Ok. Matlab comes with a toy debugger somewhat better than gdb. It does not compare to NetBeans, Eclipse or IntelliJ IDEA.
R/scripting languages Advantages

- Most people already know it.
 - There are more people who know Java/C#/C++/C than Matlab, R, etc., combined.
- It has a huge collection of math functions for math modeling and analysis.
 - Math libraries are also available in SuanShu (Java), Nmath (C#), Boost (C++), and Netlib (C).
R Disadvantages

- TOO MANY!
Some R Disadvantages

- Way too slow
 - Must interpret the code line-by-line
- Limited memory
 - How to read and process gigabytes of tick-by-tick data
- Limited parallelization
 - Cannot calibrate/simulate a strategy in many scenarios in parallel
- Inconvenient editing
 - No usage, rename, auto import, auto-completion
- Primitive debugging tools
 - No conditional breakpoint, disable, thread switch and resume
- Obsolete C-like language
 - No interface, inheritance; how to define $f(x)$?
R’s Biggest Disadvantage

- You cannot be sure your code is right!
Productivity
Free the Trader!

- Programming
- Calibrating
- Data cleaning
- Data extracting
- Debugging
- Waiting
- Backtesting
Industrial-Academic Collaboration

- Where do the building blocks of ideas come from?
 - Portfolio optimization from Prof. Lai
 - Pairs trading model from Prof. Elliott
 - Optimal trend following from Prof. Dai
 - Moving average crossover from Prof. Satchell
 - Many more......
Backtesting

- Backtesting simulates a strategy (model) using historical or fake (controlled) data.
- It gives an idea of how a strategy would work in the past.
 - It does not tell whether it will work in the future.
- It gives an objective way to measure strategy performance.
- It generates data and statistics that allow further analysis, investigation and refinement.
 - e.g., winning and losing trades, returns distribution
- It helps choose take-profit and stoploss.
A Good Backtester (1)

- allow easy strategy programming
- allow plug-and-play multiple strategies
- simulate using historical data
- simulate using fake, artificial data
- allow controlled experiments
 - e.g., bid/ask, execution assumptions, news
A Good Backtester (2)

- generate standard and user customized statistics
- have information other than prices
 - e.g., macro data, news and announcements
- Auto calibration
- Sensitivity analysis
- Quick
Iterative Refinement

- Backtesting generates a large amount of statistics and data for model analysis.
- We may improve the model by
 - regress the winning/losing trades with factors
 - identify, delete/add (in)significant factors
 - check serial correlation among returns
 - check model correlations
 - the list goes on and on......
Some Performance Statistics

- pnl
- mean, stdev, corr
- Sharpe ratio
- confidence intervals
- max drawdown
- breakeven ratio
- biggest winner/loser
- breakeven bid/ask
- slippage
The higher the ratio; the better.
This is the ratio of the probability of having a gain to the probability of having a loss.
Do not assume normality.
Use the whole returns distribution.
Bootstrapping

- We observe only one history.
- What if the world had evolve different?
- Simulate “similar” histories to get confidence interval.
- White's reality check (White, H. 2000).
Calibration

- Most strategies require calibration to update parameters for the current trading regime.
- Occam’s razor: the fewer parameters the better.
- For strategies that take parameters from the Real line: Nelder-Mead, BFGS
- For strategies that take integers: Mixed-integer non-linear programming (branch-and-bound, outer-approximation)
Global Optimization Methods
Sensitivity

- How much does the performance change for a small change in parameters?
- Avoid the optimized parameters merely being statistical artifacts.
- A plot of measure vs. d(parameter) is a good visual aid to determine robustness.
- We look for plateaus.
Summary

- Algo trading is a rare field in quantitative finance where computer sciences is at least as important as mathematics, if not more.
- Algo trading is a very competitive field in which technology is a decisive factor.
Scientific Trading Models

- Scientific trading models are supported by logical arguments.
 - can list out assumptions
 - can quantify models from assumptions
 - can deduce properties from models
 - can test properties
 - can do iterative improvements
Superstition

- Many “quantitative” models are just superstitions supported by fallacies and wishful-thinking.
Let’s Play a Game
Impostor Quant. Trader

- Decide that this is a bull market
 - by drawing a line
 - by (spurious) linear regression
- Conclude that
 - the slope is positive
 - the t-stat is significant
- Long
- Take profit at 2 upper sigmas
- Stop-loss at 2 lower sigmas
Reality

- `r = rnorm(100)`
- `px = cumsum(r)`
- `plot(px, type='l')`
Mistakes

- Data snooping
- Inappropriate use of mathematics
 + assumptions of linear regression
 - linearity
 - homoscedasticity
 - independence
 - normality
- Ad-hoc take profit and stop-loss
 + why 2?
- How do you know when the model is invalidated?
Extensions of a Wrong Model

- Some traders elaborate on this idea by
 - using a moving calibration window (e.g., Bands)
 - using various sorts of moving averages (e.g., MA, WMA, EWMA)
Fake Quantitative Models

- Data snooping
- Misuse of mathematics
- Assumptions cannot be quantified
- No model validation against the current regime
- Ad-hoc take profit and stop-loss
 + why 2?
- How do you know when the model is invalidated?
- Cannot explain winning and losing trades
- Cannot be analyzed (systematically)
A Scientific Approach

- Start with a market insight (hypothesis)
 - hopefully without peeking at the data
- Translate English into mathematics
 - write down the idea in math formulae
- In-sample calibration; out-sample backtesting
- Understand why the model is working or not
 - in terms of model parameters
 - e.g., unstable parameters, small p-values
MANY Mathematical Tools Available

- Markov model
- co-integration
- stationarity
- hypothesis testing
- bootstrapping
- signal processing, e.g., Kalman filter
- returns distribution after news/shocks
- time series modeling
- The list goes on and on......
A Sample Trading Idea

- When the price trends up, we buy.
- When the price trends down, we sell.
What is a Trend?
An Upward Trend

- More positive returns than negative ones.
- Positive returns are persistent.
Knight-Satchell-Tran Z_t

$Z_t = 0$
DOWN TREND

$Z_t = 1$
UP TREND

q

p

$(1-q)$

$(1-p)$
Knight-Satchell-Tran Process

\[R_t = \mu_l + Z_t \varepsilon_t - (1 - Z_t) \delta_t \]

- \(\mu_l \): long term mean of returns, e.g., 0
- \(\varepsilon_t, \delta_t \): positive and negative shocks, non-negative, i.i.d

\[f_{\varepsilon}(x) = \frac{\lambda_1 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} e^{-\lambda_1 x} \]

\[f_{\delta}(x) = \frac{\lambda_2 x^{\alpha_2 - 1}}{\Gamma(\alpha_2)} e^{-\lambda_2 x} \]
What Signal Do We Use?

- Let’s try Moving Average Crossover.
Moving Average Crossover

- Two moving averages: slow \((n)\) and fast \((m)\).
- Monitor the crossovers.

\[
B_t = \left(\frac{1}{m} \sum_{j=0}^{m-1} P_{t-j}\right) - \left(\frac{1}{n} \sum_{j=0}^{n-1} P_{t-j}\right), \quad n > m
\]

- Long when \(B_t \geq 0\).
- Short when \(B_t < 0\).
How to choose n and m?

- For most traders, it is an art (guess), not a science.
- Let’s make our life easier by fixing $m = 1$.
 - Why?
What is n?

- $n = 2$
- $n = \infty$
Expected P&L

- **GMA(2,1)**

 \[E(RR_T) = \frac{1}{1-p} \{ \Pi p \mu_\epsilon - (1 - p) \mu_\delta \} \]

- **GMA(∞)**

 \[E(RR_T) = -[1 - p(1 - \Pi)] \mu_\epsilon + \mu_\delta \]
Model Benefits (1)

- It makes “predictions” about which regime we are now in.
- We quantify how useful the model is by
 - the parameter sensitivity
 - the duration we stay in each regime
 - the state differentiation power
Model Benefits (2)

- We can explain winning and losing trades.
 - Is it because of calibration?
 - Is it because of state prediction?
- We can deduce the model properties.
 - Are 3 states sufficient?
 - Prediction variance?
- We can justify take profit and stoploss based on trader utility function.
Limitations

- Assumptions are not realistic.
 - Classical example: Markowitz portfolio optimization
 - http://www.numericalmethod.com:8080/nmj2ee-war/faces/webdemo/markowitz.xhtml

- Regime change.
- IT problems.
- Bad luck!
 - Variance
Markowitz’s Portfolio Selection

- For a portfolio of m assets:
 - expected returns of asset $i = \mu_i$
 - weight of asset $i = w_i$ such that $\sum_i^m w_i = 1$

- Given a target return of the portfolio μ^*, the optimal weighting w_{eff} is given by

$$w_{eff} = \arg \min_w w^T \Sigma w \text{ subject to } w^T \mu = \mu^*, w^T 1 = 1, w \geq 0$$
Stochastic Optimization Approach

- Consider the more fundamental problem:
 - Given the past returns $r_1, ..., r_n$
 \[
 \max \{ E(w^T r_{n+1}) - \lambda \text{Var}(w^T r_{n+1}) \} \]
 - λ is regarded as a risk-aversion index (user input)

- Instead, solve an equivalent stochastic optimization problem
 \[
 \max \{ E[\eta w^T r_{n+1}] - \lambda \text{Var}[\eta w^T r_{n+1}] \}
 \]
 where
 \[
 \eta = 1 + 2\lambda E(W_B)
 \]

 and
 \[
 w(\eta) = \arg \min_w \{ \lambda E[(w^T r_{n+1})^2] - \eta E(w^T r_{n+1}) \}
 \]
Mean-Variance Portfolio Optimization when Means and Covariances are Unknown
Market understanding gives you an intuition to a trading strategy.

Mathematics is the tool that makes your intuition concrete and precise.

Programming is the skill that turns ideas and equations into reality.
AlgoQuant Demo