SuanShu, a Java numerical and statistical library



com.numericalmethod.suanshu.stats.distribution.univariate
Class LogNormalDistribution

java.lang.Object
  extended by com.numericalmethod.suanshu.stats.distribution.univariate.LogNormalDistribution
All Implemented Interfaces:
ProbabilityDistribution

public class LogNormalDistribution
extends Object
implements ProbabilityDistribution

A log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed. A variable might be modeled as log-normal if it can be thought of as the multiplicative product of many independent random variables each of which is positive.

See Also:
Wikipedia: Log-normal distribution

Constructor Summary
LogNormalDistribution(double logMu, double logSigma)
          Construct a log-normal distribution.
 
Method Summary
 double cdf(double x)
          Gets the cumulative probability F(x) = Pr(X ≤ x).
 double density(double x)
          The density function, which, if exists, is the derivative of F.
 double entropy()
          Gets the entropy of this distribution.
 double kurtosis()
          Gets the excess kurtosis of this distribution.
 double mean()
          Gets the mean of this distribution.
 double median()
          Gets the median of this distribution.
 double moment(double s)
          The moment generating function is the expected value of etX.
 double quantile(double u)
          Gets the quantile, the inverse of the cumulative distribution function.
 double skew()
          Gets the skewness of this distribution.
 double variance()
          Gets the variance of this distribution.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

LogNormalDistribution

public LogNormalDistribution(double logMu,
                             double logSigma)
Construct a log-normal distribution.

Parameters:
logMu - the log mean
logSigma - the log standard deviation
Method Detail

mean

public double mean()
Description copied from interface: ProbabilityDistribution
Gets the mean of this distribution.

Specified by:
mean in interface ProbabilityDistribution
Returns:
the mean
See Also:
Wikipedia: Expected value

median

public double median()
Description copied from interface: ProbabilityDistribution
Gets the median of this distribution.

Specified by:
median in interface ProbabilityDistribution
Returns:
the median
See Also:
Wikipedia: Median

variance

public double variance()
Description copied from interface: ProbabilityDistribution
Gets the variance of this distribution.

Specified by:
variance in interface ProbabilityDistribution
Returns:
the variance
See Also:
Wikipedia: Variance

skew

public double skew()
Description copied from interface: ProbabilityDistribution
Gets the skewness of this distribution.

Specified by:
skew in interface ProbabilityDistribution
Returns:
the skewness
See Also:
Wikipedia: Skewness

kurtosis

public double kurtosis()
Description copied from interface: ProbabilityDistribution
Gets the excess kurtosis of this distribution.

Specified by:
kurtosis in interface ProbabilityDistribution
Returns:
the excess kurtosis
See Also:
Wikipedia: Kurtosis

entropy

public double entropy()
Description copied from interface: ProbabilityDistribution
Gets the entropy of this distribution.

Specified by:
entropy in interface ProbabilityDistribution
Returns:
the entropy
See Also:
Wikipedia: Entropy (information theory)

cdf

public double cdf(double x)
Description copied from interface: ProbabilityDistribution
Gets the cumulative probability F(x) = Pr(X ≤ x).

Specified by:
cdf in interface ProbabilityDistribution
Parameters:
x - x
Returns:
F(x) = Pr(X ≤ x)
See Also:
Wikipedia: Cumulative distribution function

quantile

public double quantile(double u)
Description copied from interface: ProbabilityDistribution
Gets the quantile, the inverse of the cumulative distribution function. It is the value below which random draws from the distribution would fall u×100 percent of the time.

 F-1(u) = x, such that
 Pr(X ≤ x) = u
 
This may not always exist.

Specified by:
quantile in interface ProbabilityDistribution
Parameters:
u - u, a quantile
Returns:
F-1(u)
See Also:
Wikipedia: Quantile function

density

public double density(double x)
Description copied from interface: ProbabilityDistribution
The density function, which, if exists, is the derivative of F. It describes the density of probability at each point in the sample space.
f(x) = dF(X) / dx
This may not always exist.

For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.

Specified by:
density in interface ProbabilityDistribution
Parameters:
x - x
Returns:
f(x)
See Also:

moment

public double moment(double s)
Description copied from interface: ProbabilityDistribution
The moment generating function is the expected value of etX. That is,
E(etX)
This may not always exist.

Specified by:
moment in interface ProbabilityDistribution
Parameters:
s - t
Returns:
E(exp(tX))
See Also:
Wikipedia: Moment-generating function


Copyright © 2010-2014 Numerical Method Incorporation Limited. All Rights Reserved.