# SuanShu, a Java numerical and statistical library

com.numericalmethod.suanshu.optimization.multivariate.constrained.convex.sdp.problem

## Class SDPPrimalProblem

• java.lang.Object
• com.numericalmethod.suanshu.optimization.multivariate.constrained.convex.sdp.problem.SDPPrimalProblem

• public class SDPPrimalProblem
extends Object
A Primal SDP problem, as in equation 14.1 in the reference, takes the following form. \begin{aligned} & \underset{X}{\text{minimize}} & & \mathbf{C \cdot X} \\ & \text{subject to} & & \mathbf{A_i \cdot X} = \mathbf{b_i} \text{ for } i = 1, 2, ..., p \\ &&& \mathbf{X} \succeq \mathbf{0} \end{aligned}
"Andreas Antoniou, Wu-Sheng Lu, "Section 14.2, Primal and Dual SDP Problems," Practical Optimization: Algorithms and Engineering Applications."
• ### Constructor Summary

Constructors
Constructor and Description
SDPPrimalProblem(SymmetricMatrix C, SymmetricMatrix[] A)
Constructs a primal SDP problem.
• ### Method Summary

All Methods
Modifier and Type Method and Description
SymmetricMatrix A(int i)
Gets Ai.
SymmetricMatrix C()
Gets C.
int n()
Gets the dimension of the system, i.e., the dimension of x, the number of variables.
int p()
Gets the size of b.
• ### Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
• ### Constructor Detail

• #### SDPPrimalProblem

public SDPPrimalProblem(SymmetricMatrix C,
SymmetricMatrix[] A)
Constructs a primal SDP problem. $\min_x \mathbf{c'x} \textrm{, s.t., } \\ \mathbf{Ax} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$
Parameters:
C - $$C$$
A - $$A$$
• ### Method Detail

• #### n

public int n()
Gets the dimension of the system, i.e., the dimension of x, the number of variables.
Returns:
the dimension of the system
• #### p

public int p()
Gets the size of b.
Returns:
the size of b
• #### C

public SymmetricMatrix C()
Gets C.
Returns:
C
• #### A

public SymmetricMatrix A(int i)
Gets Ai.
Parameters:
i - an index to the A's, counting from 1
Returns:
Ai