SuanShu, a Java numerical and statistical library



com.numericalmethod.suanshu.analysis.differentiation.univariate
Class DBetaRegularized

java.lang.Object
  extended by com.numericalmethod.suanshu.analysis.function.rn2r1.AbstractRealScalarFunction
      extended by com.numericalmethod.suanshu.analysis.function.rn2r1.univariate.AbstractUnivariateRealFunction
          extended by com.numericalmethod.suanshu.analysis.differentiation.univariate.DBetaRegularized
All Implemented Interfaces:
Function<Vector,Double>, RealScalarFunction, UnivariateRealFunction

public class DBetaRegularized
extends AbstractUnivariateRealFunction

This is the first order derivative function of the Regularized Incomplete Beta function, BetaRegularized, w.r.t the upper limit, x. \[ {\partial \over \partial x} \mathrm{B_x}(p, q) = \frac{x^{p-1}(1-x)^{q-1}}{\mathrm{B_x}(p, q)} \]

See Also:
Wikipedia: Incomplete beta function, BetaRegularized

Nested Class Summary
 
Nested classes/interfaces inherited from interface com.numericalmethod.suanshu.analysis.function.Function
Function.EvaluationException
 
Constructor Summary
DBetaRegularized(double p, double q)
          Construct the derivative function of the Regularized Incomplete Beta function, BetaRegularized.
 
Method Summary
 double evaluate(double x)
          Evaluate \({\partial \over \partial x} \mathrm{B_x}(p, q)\).
 
Methods inherited from class com.numericalmethod.suanshu.analysis.function.rn2r1.univariate.AbstractUnivariateRealFunction
evaluate
 
Methods inherited from class com.numericalmethod.suanshu.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface com.numericalmethod.suanshu.analysis.function.Function
dimensionOfDomain, dimensionOfRange
 

Constructor Detail

DBetaRegularized

public DBetaRegularized(double p,
                        double q)
Construct the derivative function of the Regularized Incomplete Beta function, BetaRegularized.

Parameters:
p - the shape parameter
q - the shape parameter
Method Detail

evaluate

public double evaluate(double x)
Evaluate \({\partial \over \partial x} \mathrm{B_x}(p, q)\).

Parameters:
x - \(0 \le x \le 1\)
Returns:
\({\partial \over \partial x} \mathrm{B_x}(p, q)\)


Copyright © 2010-2014 Numerical Method Incorporation Limited. All Rights Reserved.