# SuanShu, a Java numerical and statistical library

com.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problem

## Class ODE1stOrderWith2ndDerivative

• public class ODE1stOrderWith2ndDerivative
extends ODE1stOrder
Some ODE solvers require the second derivative for more accurate Taylor series approximation.
• ### Constructor Summary

Constructors
Constructor and Description
ODE1stOrderWith2ndDerivative(DerivativeFunction dy, DerivativeFunction ddy, Vector y0, double x0, double x1)
Constructs a first order ODE with initial values.
ODE1stOrderWith2ndDerivative(RealVectorFunction dy, RealVectorFunction ddy, Vector y0, double x0, double x1)
Constructs a first order ODE with initial values.
• ### Method Summary

All Methods
Modifier and Type Method and Description
DerivativeFunction ddy()
Gets y'' = F(x,y).
• ### Methods inherited from class com.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problem.ODE1stOrder

convertToDerivativeFunction, dimension, dy, x0, x1, y0
• ### Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
• ### Constructor Detail

• #### ODE1stOrderWith2ndDerivative

public ODE1stOrderWith2ndDerivative(RealVectorFunction dy,
RealVectorFunction ddy,
Vector y0,
double x0,
double x1)
Constructs a first order ODE with initial values.
Parameters:
dy - y' = F(x,y)
ddy - y'' = F(x,y)
y0 - y0
x0 - the start point of the integrating interval [x0, x1]
x1 - the end point of the integrating interval [x0, x1]
• #### ODE1stOrderWith2ndDerivative

public ODE1stOrderWith2ndDerivative(DerivativeFunction dy,
DerivativeFunction ddy,
Vector y0,
double x0,
double x1)
Constructs a first order ODE with initial values.
Parameters:
dy - y' = F(x,y)
ddy - y'' = F(x,y)
y0 - y0
x0 - the start point of the integrating interval [x0, x1]
x1 - the end point of the integrating interval [x0, x1]
• ### Method Detail

• #### ddy

public DerivativeFunction ddy()
Gets y'' = F(x,y).
Returns:
y'' = F(x,y)