# SuanShu, a Java numerical and statistical library

com.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problem

## Class ODE

• java.lang.Object
• com.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problem.ODE

• public class ODE
extends Object
An ordinary differential equation (ODE) is an equation in which there is only one independent variable and one or more derivatives of a dependent variable with respect to the independent variable, so that all the derivatives occurring in the equation are ordinary derivatives. A (high order) ordinary differential equation of order n takes this form. $y^{(n)} = F(x,y,y',\ \dotsc,\ y^{(n-1)})$
Wikipedia: Ordinary differential equation
• ### Constructor Summary

Constructors
Constructor and Description
ODE(RealScalarFunction F, double[] initials, double x0, double x1)
Construct an ODE of order n together with its initial values.
• ### Method Summary

All Methods
Modifier and Type Method and Description
RealScalarFunction F()
Get the differential, $$y^{(n)} = F$$.
double x0()
Get the start point of the integrating interval [x0, x1].
double x1()
Get the end point of the integrating interval [x0, x1].
double y0(int order)
Get the initial value for the n-th order (derivative).
• ### Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
• ### Constructor Detail

• #### ODE

public ODE(RealScalarFunction F,
double[] initials,
double x0,
double x1)
Construct an ODE of order n together with its initial values.
Parameters:
F - y(n) = F(x, y, y', ..., y(n-1))
initials - y(x0), y'(x0), ..., y(n-1)(x0)
x0 - the start point of the integrating interval [x0, x1]
x1 - the end point of the integrating interval [x0, x1]
• ### Method Detail

• #### F

public RealScalarFunction F()
Get the differential, $$y^{(n)} = F$$.
Returns:
the differential
• #### y0

public double y0(int order)
Get the initial value for the n-th order (derivative).
Parameters:
order - the differentiation order
Returns:
the initial value for the n-th order
• #### x0

public double x0()
Get the start point of the integrating interval [x0, x1].
Returns:
x0
• #### x1

public double x1()
Get the end point of the integrating interval [x0, x1].
Returns:
x1